Translation for "sisätulon" to english
Translation examples
Koska sisätulo on invariantti, näiden on oltava yhtä suuret:
Then since the inner product is an invariant, these must be equal:
Koska tämä on operaattori, sillä ei ole "pituutta", mutta jos lasketaan muodollisesti tämän operaattorin sisätulo itsensä kanssa, saadaan toinen operaattori:
Since this is an operator, it doesn't have a "length", but evaluating the inner product of the operator with itself gives another operator:
Yhtälöllä xTℓ = 0 lasketaan kahden pysty­vektorin sisätulo.
The equation xTℓ = 0 calculates the inner product of two column vectors.
Sisätulo on pistetulon yleistys abstarkteihin vektori­avaruuksiin, joiden kerroin­kuntana on joko reaalilukujen ( R {\displaystyle \mathbb {R} } ) tai kompleksilukujen kunta ( C {\displaystyle \mathbb {C} } ).
The inner product generalizes the dot product to abstract vector spaces over a field of scalars, being either the field of real numbers R {\displaystyle \mathbb {R} } or the field of complex numbers C {\displaystyle \mathbb {C} } .
Samoin kuin vektorien sisätulo lasketaan vastaavien komponenttien tulojen summana, funktion sisätulo määritellään integraalina jonkin välin a < x b yli, jolle välille käytetään myös merkintää : ⟨ u , v ⟩ = ∫ a b u ( x ) v ( x ) d x {\displaystyle \left\langle u,v\right\rangle =\int _{a}^{b}u(x)v(x)dx} Tämä voidaan edelleen yleistää kompleksifunktioille ψ ( x ) {\displaystyle \psi (x)} ja χ ( x ) {\displaystyle \chi (x)} samaan tapaan kuin kompleksivektorien sisätulo edellä määriteltiin.
This notion can be generalized to continuous functions: just as the inner product on vectors uses a sum over corresponding components, the inner product on functions is defined as an integral over some interval a ≤ x ≤ b (also denoted ): ⟨ u , v ⟩ = ∫ a b u ( x ) v ( x ) d x {\displaystyle \left\langle u,v\right\rangle =\int _{a}^{b}u(x)v(x)dx} Generalized further to complex functions ψ(x) and χ(x), by analogy with the complex inner product above, gives ⟨ ψ , χ ⟩ = ∫ a b ψ ( x ) χ ( x ) ¯ d x . {\displaystyle \left\langle \psi ,\chi \right\rangle =\int _{a}^{b}\psi (x){\overline {\chi (x)}}dx.} Inner products can have a weight function, i.e. a function which weights each term of the inner product with a value.
Tällöin kaikilla x ∈ H {\displaystyle x\in H} ∑ k = 1 ∞ | ⟨ x , e k ⟩ | 2 ≤ ‖ x ‖ 2 , {\displaystyle \sum _{k=1}^{\infty }\left\vert \left\langle x,e_{k}\right\rangle \right\vert ^{2}\leq \left\Vert x\right\Vert ^{2},} missä <∙,∙> on H:n sisätulo.
Then, for any x {\displaystyle x} in H {\displaystyle H} one has ∑ k = 1 ∞ | ⟨ x , e k ⟩ | 2 ≤ ‖ x ‖ 2 , {\displaystyle \sum _{k=1}^{\infty }\left\vert \left\langle x,e_{k}\right\rangle \right\vert ^{2}\leq \left\Vert x\right\Vert ^{2},} where 〈•,•〉 denotes the inner product in the Hilbert space H {\displaystyle H} .
Kanta voidaan esittää rivivektoreina: e 0 = ( 1 0 0 0 ) , e 1 = ( 0 1 0 0 ) , e 2 = ( 0 0 1 0 ) , e 3 = ( 0 0 0 1 ) {\displaystyle \mathbf {e} ^{0}={\begin{pmatrix}1&0&0&0\end{pmatrix}}\,,\quad \mathbf {e} ^{1}={\begin{pmatrix}0&1&0&0\end{pmatrix}}\,,\quad \mathbf {e} ^{2}={\begin{pmatrix}0&0&1&0\end{pmatrix}}\,,\quad \mathbf {e} ^{3}={\begin{pmatrix}0&0&0&1\end{pmatrix}}} niin että: A = ( A 0 A 1 A 2 A 3 ) {\displaystyle \mathbf {A} ={\begin{pmatrix}A_{0}&A_{1}&A_{2}&A_{3}\end{pmatrix}}} Perusteena näille merkintätavoille on se, että sisätulo on skalaari.
The bases can be represented by row vectors: E 0 = ( 1 0 0 0 ) , E 1 = ( 0 1 0 0 ) , E 2 = ( 0 0 1 0 ) , E 3 = ( 0 0 0 1 ) {\displaystyle \mathbf {E} ^{0}={\begin{pmatrix}1&0&0&0\end{pmatrix}}\,,\quad \mathbf {E} ^{1}={\begin{pmatrix}0&1&0&0\end{pmatrix}}\,,\quad \mathbf {E} ^{2}={\begin{pmatrix}0&0&1&0\end{pmatrix}}\,,\quad \mathbf {E} ^{3}={\begin{pmatrix}0&0&0&1\end{pmatrix}}} so that: A = ( A 0 A 1 A 2 A 3 ) {\displaystyle \mathbf {A} ={\begin{pmatrix}A_{0}&A_{1}&A_{2}&A_{3}\end{pmatrix}}} The motivation for the above conventions are that the inner product is a scalar, see below for details.
Massalliselle kappaleelle, jonka lepomassa tai invariantti massa on m', neliliikemäärä määritellään: P = m U = m γ ( u ) ( c , u ) = ( E / c , p ) {\displaystyle \mathbf {P} =m\mathbf {U} =m\gamma (\mathbf {u} )(c,\mathbf {u} )=(E/c,\mathbf {p} )} missä liikkuvan kappaleen kokonaisenergia on: E = γ ( u ) m c 2 {\displaystyle E=\gamma (\mathbf {u} )mc^{2}} ja sen relativistinen kokonaisliikemäärä on: p = γ ( u ) m u {\displaystyle \mathbf {p} =\gamma (\mathbf {u} )m\mathbf {u} } Laskemalla neliliikemäärän sisätulo itsensä kanssa saadaan: ‖ P ‖ 2 = P μ P μ = m 2 U μ U μ = m 2 c 2 {\displaystyle \|\mathbf {P} \|^{2}=P^{\mu }P_{\mu }=m^{2}U^{\mu }U_{\mu }=m^{2}c^{2}} ja myös: ‖ P ‖ 2 = E 2 c 2 − p ⋅ p {\displaystyle \|\mathbf {P} \|^{2}={\frac {E^{2}}{c^{2}}}-\mathbf {p} \cdot \mathbf {p} } mistä saadaan kappaleen energian ja liikemäärän välinen yhteys: E 2 = c 2 p ⋅ p + ( m c 2 ) 2 . {\displaystyle E^{2}=c^{2}\mathbf {p} \cdot \mathbf {p} +(mc^{2})^{2}\,.} Tämä tulos on käyttökelpoinen relati­visti­sessa meka­niikassa ja oleellisen tärkeä relati­visti­sessa kvantti­mekaniikassa sekä relati­visti­sessa kvantti­kenttä­teoriassa, joita kaikkia sovelletaan hiukkas­fysiikassa.
For a massive particle of rest mass (or invariant mass) m0, the four-momentum is given by: P = m 0 U = m 0 γ ( u ) ( c , u ) = ( E / c , p ) {\displaystyle \mathbf {P} =m_{0}\mathbf {U} =m_{0}\gamma (\mathbf {u} )(c,\mathbf {u} )=(E/c,\mathbf {p} )} where the total energy of the moving particle is: E = γ ( u ) m 0 c 2 {\displaystyle E=\gamma (\mathbf {u} )m_{0}c^{2}} and the total relativistic momentum is: p = γ ( u ) m 0 u {\displaystyle \mathbf {p} =\gamma (\mathbf {u} )m_{0}\mathbf {u} } Taking the inner product of the four-momentum with itself: ‖ P ‖ 2 = P μ P μ = m 0 2 U μ U μ = m 0 2 c 2 {\displaystyle \|\mathbf {P} \|^{2}=P^{\mu }P_{\mu }=m_{0}^{2}U^{\mu }U_{\mu }=m_{0}^{2}c^{2}} and also: ‖ P ‖ 2 = E 2 c 2 − p ⋅ p {\displaystyle \|\mathbf {P} \|^{2}={\frac {E^{2}}{c^{2}}}-\mathbf {p} \cdot \mathbf {p} } which leads to the energy–momentum relation: E 2 = c 2 p ⋅ p + ( m 0 c 2 ) 2 . {\displaystyle E^{2}=c^{2}\mathbf {p} \cdot \mathbf {p} +(m_{0}c^{2})^{2}\,.} This last relation is useful relativistic mechanics, essential in relativistic quantum mechanics and relativistic quantum field theory, all with applications to particle physics.
How many English words do you know?
Test your English vocabulary size, and measure how many words you know.
Online Test